Quantum Computation of Universal Link Invariants
نویسندگان
چکیده
In the framework of the spin-network simulator based on the SUq(2) tensor algebra, we implement families of finite state quantum automata capable of accepting the language generated by the braid group, and whose transition amplitudes are coloured Jones polynomials. The automaton calculation of the polynomial of a link L on n strands at any fixed root of unity q is bounded from above by a linear function of the number of crossings of the link, on the one hand, and polynomially bounded in terms of the braid index n, on the other.
منابع مشابه
Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard splitting. The algorithm is motivated by the relationship between topological quantum computers and (2 + 1)dimensional topological quantum field theories. Its accuracy is shown to be...
متن کاملBraiding Operators are Universal Quantum Gates
This paper is an exploration of the role of unitary braiding operators in quantum computing. We show that a single specific solution R of the Yang-Baxter Equation is a universal gate for quantum computing, in the presence of local unitary transformations. We show that this same R generates a new non-trivial invariant of braids, knots, and links. The paper discusses these results in the context ...
متن کاملThe Kontsevich integral and quantized Lie superalgebras
Given a finite dimensional representation of a semisimple Lie algebra there are two ways of constructing link invariants: 1) quantum group invariants using the R-matrix, 2) the Kontsevich universal link invariant followed by the Lie algebra based weight system. Le and Murakami showed that these two link invariants are the same. These constructions can be generalized to some classes of Lie super...
متن کاملThe Kontsevich Integral And
Given a finite dimensional representation of a semisimple Lie algebra there are two ways of constructing link invariants: 1) quantum group invariants using the R-matrix, 2) the Kontsevich universal link invariant followed by the Lie algebra based weight system. Le and Murakami showed that these two link invariants are the same. These constructions can be generalized to some classes of Lie super...
متن کاملSecondary Invariants for Frechet Algebras, Quasihomomorphisms, and the Residue Chern Character
A Fréchet algebra endowed with a multiplicatively convex topology has two types of invariants: homotopy invariants (topological K-theory and periodic cyclic homology) and secondary invariants (multiplicative Ktheory and the non-periodic versions of cyclic homology). The first aim of this paper is to establish a Riemann-Roch-Grothendieck theorem which describes direct images for homotopy and sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Open Syst. Inform. Dynam.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006